Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Mol Phylogenet Evol ; 181: 107713, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36693532

RESUMO

The papilionoid legume genus Sophora (Fabaceae) exhibits a worldwide distribution, but a phylogenetic framework to understand the evolution of this group is lacking to date. Previous studies have demonstrated that Sophora is not monophyletic and might include Ammodendron, Ammothamnus, and Echinosophora, but the relationships among these four genera (defined as Sophora s.l.) are unclear. Here we used a nuclear DNA dataset (ETS, ITS, SQD1) and a plastid DNA dataset (matK, rbcL, rpl32-trnL, trnL-F) of 654 accession sequences to reconstruct the phylogenetic relationships, estimate the divergence times and ancestral range of Sophora s.l., and infer the evolution of chromosome number and morphological characteristics. Our major aim was to reconstruct phylogenetic relationships to test monophyly and elucidate relationships within the genus. Our results indicated that Ammodendron, Ammothamnus, and Echinosophora are embedded within Sophora s.s. and that nine well-supported clades can be recognized within comprise Sophora s.l. Ancestral character state estimation revealed that the most recent common ancestor of Sophora s.l. was a deciduous shrub that lacks rhizome spines and has unwinged legumes. Divergence times estimation and ancestral area reconstruction showed that Sophora s.l. originated in Central Asia and/or adjacent Southeast China in the early Oligocene (ca. 31 Mya) and dispersed from these regions into East and South Asia's adjacent areas and North America via the Bering land bridge. The analyses also supported a South American origin for S. sect. Edwardsia, which experienced rapid radiation with its major lineages diversifying over a relatively narrow timescale (8 Mya).


Assuntos
Fabaceae , Sophora , Filogenia , Fabaceae/genética , Sophora/genética , América do Norte , China , DNA de Plantas/genética , Teorema de Bayes
3.
PLoS One ; 17(10): e0266430, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36215252

RESUMO

Kiwi are a unique and emblematic group of birds endemic to New Zealand. Deep-time evolutionary relationships among the five extant kiwi species have been difficult to resolve, in part due to the absence of pre-Quaternary fossils to inform speciation events. Here, we utilise single representative nuclear genomes of all five extant kiwi species (great spotted kiwi, little spotted kiwi, Okarito brown kiwi, North Island brown kiwi, and southern brown kiwi) and investigate their evolutionary histories with phylogenomic, genetic diversity, and deep-time (past million years) demographic analyses. We uncover relatively low levels of gene-tree phylogenetic discordance across the genomes, suggesting clear distinction between species. However, we also find indications of post-divergence gene flow, concordant with recent reports of interspecific hybrids. The four species for which unbiased levels of genetic diversity could be calculated, due to the availability of reference assemblies (all species except the southern brown kiwi), show relatively low levels of genetic diversity, which we suggest reflects a combination of older environmental as well as more recent anthropogenic influence. In addition, we suggest hypotheses regarding the impact of known past environmental events, such as volcanic eruptions and glacial periods, on the similarities and differences observed in the demographic histories of the five kiwi species over the past million years.


Assuntos
Paleógnatas , Struthioniformes , Animais , Demografia , Genômica , Paleógnatas/genética , Filogenia
4.
PLoS One ; 17(9): e0275102, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36166411

RESUMO

Prions are small petrels that are abundant around the Southern Ocean. Here we use mitochondrial DNA (COI and cytochrome b) and nuclear reduced representation sequencing (ddRADseq) to examine the relationships within and between fairy (Pachyptila turtur) and fulmar (P. crassirostris) prions from across their distributions. We found that neither species was recovered as monophyletic, and that at least three species were represented. Furthermore, we detected several genetic lineages that are also morphologically distinct occurring in near sympatry at two locations (Snares Islands and Chatham Islands). The factors that have driven diversification in the fairy/fulmar prion complex are unclear but may include philopatry, differences in foraging distribution during breeding, differences in non-breeding distributions and breeding habitat characteristics. The observed distribution of genetic variation in the fairy/fulmar prion complex is consistent with population expansion from ice-free Last Glacial Maximum refugia into previously glaciated areas.


Assuntos
Citocromos b , Príons , Animais , Aves/genética , Citocromos b/genética , DNA Mitocondrial/genética , Variação Genética , Genômica , Filogenia , Príons/genética
5.
Front Plant Sci ; 13: 885501, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35909781

RESUMO

While the family Schizaeaceae (Schizaeales) represents only about 0.4% of the extant fern species diversity, it differs from other ferns greatly in gross morphologies, niche preferences, and life histories. One of the most notable features in this family is its mycoheterotrophic life style in the gametophytic stage, which appears to be associated with extensive losses of plastid genes. However, the limited number of sequenced plastomes, and the lack of a well-resolved phylogenetic framework of Schizaeaceae, makes it difficult to gain any further insight. Here, with a comprehensive sampling of ~77% of the species diversity of this family, we first inferred a plastid phylogeny of Schizaeaceae using three DNA regions. To resolve the deep relationships within this family, we then reconstructed a plastome-based phylogeny focusing on a selection of representatives that covered all the major clades. From this phylogenomic backbone, we traced the evolutionary histories of plastid genes and examined whether gene losses were associated with the evolution of gametophytic mycoheterotrophy. Our results reveal that extant Schizaeaceae is comprised of four major clades-Microschizaea, Actinostachys, Schizaea, and Schizaea pusilla. The loss of all plastid NADH-like dehydrogenase (ndh) genes was confirmed to have occurred in the ancestor of extant Schizaeaceae, which coincides with the evolution of mycoheterotrophy in this family. For chlorophyll biosynthesis genes (chl), the losses were interpreted as convergent in Schizaeaceae, and found not only in Actinostachys, a clade producing achlorophyllous gametophytes, but also in S. pusilla with chlorophyllous gametophytes. In addition, we discovered a previously undescribed but phylogenetically distinct species hidden in the Schizaea dichotoma complex and provided a taxonomic treatment and morphological diagnostics for this new species-Schizaea medusa. Finally, our phylogenetic results suggest that the current PPG I circumscription of Schizaea is non-monophyletic, and we therefore proposed a three-genus classification moving a subset of Schizaea species sensu PPG I to a third genus-Microschizaea.

6.
Nat Commun ; 13(1): 3912, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35853876

RESUMO

Penguins lost the ability to fly more than 60 million years ago, subsequently evolving a hyper-specialized marine body plan. Within the framework of a genome-scale, fossil-inclusive phylogeny, we identify key geological events that shaped penguin diversification and genomic signatures consistent with widespread refugia/recolonization during major climate oscillations. We further identify a suite of genes potentially underpinning adaptations related to thermoregulation, oxygenation, diving, vision, diet, immunity and body size, which might have facilitated their remarkable secondary transition to an aquatic ecology. Our analyses indicate that penguins and their sister group (Procellariiformes) have the lowest evolutionary rates yet detected in birds. Together, these findings help improve our understanding of how penguins have transitioned to the marine environment, successfully colonizing some of the most extreme environments on Earth.


Assuntos
Spheniscidae , Animais , Evolução Biológica , Fósseis , Genoma , Genômica , Filogenia , Spheniscidae/genética
7.
Mol Phylogenet Evol ; 175: 107575, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35835426

RESUMO

The New Zealand wattlebirds (Callaeidae) are an endemic New Zealand passerine family whose species show extreme variation in bill morphology. In particular, the extinct huia (Heteralocha acutirostris) has attracted considerable attention because it exhibited extreme sexual dimorphism in bill morphology. However, the phylogenetic relationships within the Callaeidae, crucial for understanding bill evolution in the family, have not been resolved to date. Here we present phylogenies based on complete mitochondrial genome sequences and nuclear ultraconserved elements. Kokako (Callaeas spp.) is strongly supported as sister taxon to saddleback/tieke (Philesturnus spp.) and huia, diverging around 6.8 Ma. Saddleback and huia are estimated to have split from each other 5 Ma, indicating that the extreme sexual bill dimorphism in huia has evolved within this time frame. Our estimates for the divergences within the Callaetidae are similar to, or younger than, those of most other endemic New Zealand avian families, therefore the observed bill variation is not a consequence of a longer divergence time. Instead, the expansion of the huia into the wood-foraging niche, combined with the sexual dimorphism it evolved in order to optimise feeding on this resource, has been the main contributor to the large variation of bill morphologies within this family.


Assuntos
Genoma Mitocondrial , Passeriformes , Animais , Humanos , Passeriformes/genética , Filogenia , Ranidae , Caracteres Sexuais
8.
Mol Genet Genomics ; 297(1): 183-198, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34921614

RESUMO

Interspecific introgression can occur between species that evolve rapidly within an adaptive radiation. Pachyptila petrels differ in bill size and are characterised by incomplete reproductive isolation, leading to interspecific gene flow. Salvin's prion (Pachyptila salvini), whose bill width is intermediate between broad-billed (P. vittata) and Antarctic (P. desolata) prions, evolved through homoploid hybrid speciation. MacGillivray's prion (P. macgillivrayi), known from a single population on St Paul (Indian Ocean), has a bill width intermediate between salvini and vittata and could also be the product of interspecies introgression or hybrid speciation. Recently, another prion population phenotypically similar to macgillivrayi was discovered on Gough (Atlantic Ocean), where it breeds 3 months later than vittata. The similarity in bill width between the medium-billed birds on Gough and macgillivrayi suggest that they could be closely related. In this study, we used genetic and morphological data to infer the phylogenetic position and evolutionary history of P. macgillivrayi and the Gough medium-billed prion relative other Pachyptila taxa, to determine whether species with medium bill widths evolved through common ancestry or convergence. We found that Gough medium-billed prions belong to the same evolutionary lineage as macgillivrayi, representing a new population of MacGillivray's prion that originated through a colonisation event from St Paul. We show that macgillivrayi's medium bill width evolved through divergence (genetic drift) and independently from that of salvini, which evolved through hybridisation (gene flow). This represents the independent convergence towards a similarly medium-billed phenotype. The newly discovered MacGillivray's prion population on Gough is of utmost conservation relevance, as the relict macgillivrayi population in the Indian Ocean is very small.


Assuntos
Bico/anatomia & histologia , Aves , Evolução Molecular , Animais , Regiões Antárticas , Oceano Atlântico , Aves/anatomia & histologia , Aves/classificação , Aves/genética , Fluxo Gênico , Variação Genética , Hibridização Genética , Oceano Índico , Ilhas do Oceano Índico , Fenótipo , Filogenia
9.
Mol Phylogenet Evol ; 150: 106881, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32512193

RESUMO

Dennstaedtiaceae has 270 species, a worldwide distribution, and an edge-colonizing habit that is unusual among ferns. Aneuploidy, polyploidy, and hybrids are common in the family. Combining morphology, anatomy, chromosome number, and geographical distributions with our newly generated molecular phylogeny, we provide new insights into the evolution of the family. We paid special attention to Hypolepis. Our molecular dataset of five cpDNA markers is the most comprehensive to date, comprising 72 species (and a total of 98 taxa), of which 33 are Hypolepis (45 taxa). We also generated divergence-time estimates through BEAST with four fossil calibrations. We recovered three sub-families in Dennstaedtiaceae: Monachosoroideae (monogeneric), Dennstaedtioideae, and Hypolepidoideae. Monachosoroideae has a chromosome base number of x = 28; Hypolepidoideae of x = 26; while in Dennstaedtioideae this is still obscure, with different numbers ranging from 30 to 47. Dennstaedtioideae genera require re-circumscriptions because Dennstaedtia is polyphyletic. In Hypolepidoideae, the six genera are monophyletic. Within Hypolepis, seven geographically distinct clades were recovered; but we found no strong morphological characters to define them. Within the family, the long-creeping rhizome evolved with a change in habit: from shade-tolerant to edge-colonizers, to thicket-formers. Short or extremely large leaves are derived conditions. Sorus shape and position, glandular hairs, and prickles are homoplastic. Hybridization/allotetraploidy in Hypolepis can be suggested by the combined data. In our phylogenetic hypothesis, Dennstaedtiaceae originated around 135 Ma, with the split of Monachosoroideae around 94 Ma, and the split between Dennstaedtioideae/Hypolepidoideae around 78 Ma. All extant genera are inferred to be relatively young. Hypolepis started to diversify around 10 Ma, and it probably originated in east Asia and/or Oceania. Hypolepis reached the Neotropics twice: through elements of the Hypolepis rugosula clade (which originated at 7 Ma), and through the ancestor of the Neotropical clade, which originated at 3.1 Ma and was prickly.


Assuntos
Dennstaedtiaceae/classificação , Cromossomos de Plantas/genética , Dennstaedtiaceae/genética , Evolução Molecular , Fósseis , Hibridização Genética , Filogenia , Folhas de Planta/genética , Poliploidia
11.
Am J Bot ; 106(10): 1365-1376, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31545874

RESUMO

PREMISE: Spore-bearing plants are capable of dispersing very long distances. However, it is not known if gene flow can prevent genetic divergence in widely distributed taxa. Here we address this issue, and examine systematic relationships at a global geographic scale for the fern genus Pteridium. METHODS: We sampled plants from 100 localities worldwide, and generated nucleotide data from four nuclear genes and two plastid regions. We also examined 2801 single nucleotide polymorphisms detected by a restriction site-associated DNA approach. RESULTS: We found evidence for two distinct diploid species and two allotetraploids between them. The "northern" species (Pteridium aquilinum) has distinct groups at the continental scale (Europe, Asia, Africa, and North America). The northern European subspecies pinetorum appears to involve admixture among all of these. A sample from the Hawaiian Islands contained elements of both North American and Asian P. aquilinum. The "southern" species, P. esculentum, shows little genetic differentiation between South American and Australian samples. Components of African genotypes are detected on all continents. CONCLUSIONS: We find evidence of distinct continental-scale genetic differentiation in Pteridium. However, on top of this is a clear signal of recent hybridization. Thus, spore-bearing plants are clearly capable of extensive long-distance gene flow; yet appear to have differentiated genetically at the continental scale. Either gene flow in the past was at a reduced level, or vicariance is possible even in the face of long-distance gene flow.


Assuntos
Gleiquênias , Pteridium , África , Ásia , Austrália , Europa (Continente) , Havaí , América do Norte
12.
Gigascience ; 8(9)2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31531675

RESUMO

BACKGROUND: Penguins (Sphenisciformes) are a remarkable order of flightless wing-propelled diving seabirds distributed widely across the southern hemisphere. They share a volant common ancestor with Procellariiformes close to the Cretaceous-Paleogene boundary (66 million years ago) and subsequently lost the ability to fly but enhanced their diving capabilities. With ∼20 species among 6 genera, penguins range from the tropical Galápagos Islands to the oceanic temperate forests of New Zealand, the rocky coastlines of the sub-Antarctic islands, and the sea ice around Antarctica. To inhabit such diverse and extreme environments, penguins evolved many physiological and morphological adaptations. However, they are also highly sensitive to climate change. Therefore, penguins provide an exciting target system for understanding the evolutionary processes of speciation, adaptation, and demography. Genomic data are an emerging resource for addressing questions about such processes. RESULTS: Here we present a novel dataset of 19 high-coverage genomes that, together with 2 previously published genomes, encompass all extant penguin species. We also present a well-supported phylogeny to clarify the relationships among penguins. In contrast to recent studies, our results demonstrate that the genus Aptenodytes is basal and sister to all other extant penguin genera, providing intriguing new insights into the adaptation of penguins to Antarctica. As such, our dataset provides a novel resource for understanding the evolutionary history of penguins as a clade, as well as the fine-scale relationships of individual penguin lineages. Against this background, we introduce a major consortium of international scientists dedicated to studying these genomes. Moreover, we highlight emerging issues regarding ensuring legal and respectful indigenous consultation, particularly for genomic data originating from New Zealand Taonga species. CONCLUSIONS: We believe that our dataset and project will be important for understanding evolution, increasing cultural heritage and guiding the conservation of this iconic southern hemisphere species assemblage.


Assuntos
Genoma , Spheniscidae/genética , Animais , Evolução Molecular , Filogenia
13.
PLoS One ; 14(5): e0216903, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31107899

RESUMO

Hybridization is common in many ferns and has been a significant factor in fern evolution and speciation. However, hybrids are rare between the approximately 30 species of Dicksonia tree ferns world-wide, and none are well documented. In this study we examine the relationship of a newly-discovered Dicksonia tree fern from Whirinaki, New Zealand, which does not fit the current taxonomy of the three species currently recognized in New Zealand. Our microsatellite genotyping and ddRAD-seq data indicate these plants are F1 hybrids that have formed multiple times between D. fibrosa and D. lanata subsp. lanata. The Whirinaki plants have intermediate morphology between D. fibrosa and D. lanata subsp. lanata and their malformed spores are consistent with a hybrid origin. The Whirinaki plants-Dicksonia fibrosa × D. lanata subsp. lanata-are an example of hybridization between distantly related fern lineages, with the two parent species estimated to have diverged 55-25 mya. Our chloroplast sequencing indicates asymmetric chloroplast inheritance in the Whirinaki morphology with D. lanata subsp. lanata always contributing the chloroplast genome.


Assuntos
Cloroplastos/genética , Gleiquênias/genética , Genoma de Cloroplastos , Hibridização Genética , Nova Zelândia
14.
Mol Biol Evol ; 36(8): 1671-1685, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31028398

RESUMO

Speciation through homoploid hybridization (HHS) is considered extremely rare in animals. This is mainly because the establishment of reproductive isolation as a product of hybridization is uncommon. Additionally, many traits are underpinned by polygeny and/or incomplete dominance, where the hybrid phenotype is an additive blend of parental characteristics. Phenotypically intermediate hybrids are usually at a fitness disadvantage compared with parental species and tend to vanish through backcrossing with parental population(s). It is therefore unknown whether the additive nature of hybrid traits in itself could lead successfully to HHS. Using a multi-marker genetic data set and a meta-analysis of diet and morphology, we investigated a potential case of HHS in the prions (Pachyptila spp.), seabirds distinguished by their bills, prey choice, and timing of breeding. Using approximate Bayesian computation, we show that the medium-billed Salvin's prion (Pachyptila salvini) could be a hybrid between the narrow-billed Antarctic prion (Pachyptila desolata) and broad-billed prion (Pachyptila vittata). Remarkably, P. salvini's intermediate bill width has given it a feeding advantage with respect to the other Pachyptila species, allowing it to consume a broader range of prey, potentially increasing its fitness. Available metadata showed that P. salvini is also intermediate in breeding phenology and, with no overlap in breeding times, it is effectively reproductively isolated from either parental species through allochrony. These results provide evidence for a case of HHS in nature, and show for the first time that additivity of divergent parental traits alone can lead directly to increased hybrid fitness and reproductive isolation.


Assuntos
Bico/anatomia & histologia , Aves/genética , Especiação Genética , Hibridização Genética , Isolamento Reprodutivo , Animais , Aves/anatomia & histologia , Dieta , Comportamento Alimentar
15.
Mol Biol Evol ; 36(4): 784-797, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30722030

RESUMO

The emergence of islands has been linked to spectacular radiations of diverse organisms. Although penguins spend much of their lives at sea, they rely on land for nesting, and a high proportion of extant species are endemic to geologically young islands. Islands may thus have been crucial to the evolutionary diversification of penguins. We test this hypothesis using a fossil-calibrated phylogeny of mitochondrial genomes (mitogenomes) from all extant and recently extinct penguin taxa. Our temporal analysis demonstrates that numerous recent island-endemic penguin taxa diverged following the formation of their islands during the Plio-Pleistocene, including the Galápagos (Galápagos Islands), northern rockhopper (Gough Island), erect-crested (Antipodes Islands), Snares crested (Snares) and royal (Macquarie Island) penguins. Our analysis also reveals two new recently extinct island-endemic penguin taxa from New Zealand's Chatham Islands: Eudyptes warhami sp. nov. and a dwarf subspecies of the yellow-eyed penguin, Megadyptes antipodes richdalei ssp. nov. Eudyptes warhami diverged from the Antipodes Islands erect-crested penguin between 1.1 and 2.5 Ma, shortly after the emergence of the Chatham Islands (∼3 Ma). This new finding of recently evolved taxa on this young archipelago provides further evidence that the radiation of penguins over the last 5 Ma has been linked to island emergence. Mitogenomic analyses of all penguin species, and the discovery of two new extinct penguin taxa, highlight the importance of island formation in the diversification of penguins, as well as the extent to which anthropogenic extinctions have affected island-endemic taxa across the Southern Hemisphere's isolated archipelagos.


Assuntos
Especiação Genética , Genoma Mitocondrial , Ilhas , Spheniscidae/genética , Animais , Fósseis , Nova Zelândia , Filogeografia
16.
PLoS One ; 14(1): e0210528, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30650155

RESUMO

Genetic analyses provide a powerful tool with which to identify the biological components of historical objects. Te Tiriti o Waitangi | The Treaty of Waitangi is New Zealand's founding document, intended to be a partnership between the indigenous Maori and the British Crown. Here we focus on an archived piece of blank parchment that has been proposed to be the missing portion of the lower parchment of the Waitangi Sheet of the Treaty. However, its physical dimensions and characteristics are not consistent with this hypothesis. We perform genetic analyses on the parchment membranes of the Treaty, plus the blank piece of parchment. We find that all three parchments were made from ewes and that the blank parchment is highly likely to be a portion cut from the lower membrane of the Waitangi Sheet because they share identical whole mitochondrial genomes, including an unusual heteroplasmic site. We suggest that the differences in size and characteristics between the two pieces of parchment may have resulted from the Treaty's exposure to water in the early 20th century and the subsequent repair work, light exposure during exhibition or the later conservation treatments in the 1970s and 80s. The blank piece of parchment will be valuable for comparison tests to study the effects of earlier treatments and to monitor the effects of long-term display on the Treaty.


Assuntos
Equidade em Saúde/legislação & jurisprudência , Política de Saúde/legislação & jurisprudência , Serviços de Saúde do Indígena/legislação & jurisprudência , Cooperação Internacional , Animais , Identificação Biométrica/métodos , DNA Mitocondrial/classificação , DNA Mitocondrial/isolamento & purificação , Feminino , Testes Genéticos/métodos , Genoma Mitocondrial/genética , Humanos , Nova Zelândia , Filogenia , Ovinos/genética , Reino Unido
17.
Front Microbiol ; 10: 2944, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32010072

RESUMO

Lycopods are tracheophytes in the Kingdom Plantae and represent one of the oldest lineages of living vascular plants. Symbiotic interactions between these plants with fungi and bacteria, including fine root endophytes in Endogonales, have been hypothesized to have helped early diverging plant lineages colonize land. However, attempts to study the lycopod rhizobiome in its natural environment are still limited. In this study, we used Illumina amplicon sequencing to characterize fungal and bacterial diversity in nine Lycopodiaceae (club moss) species collected in New Zealand. This was done with generic fungal ITS rDNA primers, as well as Endogonales- and arbuscular mycorrhizal fungi (AMF)-selective primer sets targeting the 18S rDNA, and generic bacterial primers targeting the V4 region of the 16S rDNA. We found that the Lycopodiaceae rhizobiome was comprised of an unexpected high frequency of Basidiomycota and Ascomycota coincident with a low abundance of Endogonales and Glomerales. The distribution and abundance of Endogonales varied with host lycopod, and included a novel taxon as well as a single operational taxonomic unit (OTU) that was detected across all plant species. The Lycopodiaceae species with the greatest number and also most unique OTUs was Phlegmariurus varius, while the plant species that shared the most fungal OTUs were Lycopodiella fastigiatum and Lycopodium scariosum. The bacterial OTU distribution was generally not consistent with fungal OTU distribution. For example, community dissimilarity analysis revealed strong concordance between the evolutionary histories of host plants with the fungal community but not with the bacterial community, indicating that Lycopodiaceae have evolved specific relationships with their fungal symbionts. Notably, nearly 16% of the ITS rDNA fungal diversity detected in the Lycopodiaceae rhizobiome remained poorly classified, indicating there is much plant-associated fungal diversity left to describe in New Zealand.

18.
PLoS One ; 13(10): e0204943, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30332433

RESUMO

We examined the genetic structuring of rengarenga (Arthropodium cirratum; Asparagaceae), an endemic New Zealand coastal herb, using nuclear microsatellite markers. This species was brought into cultivation by Maori within the last 700-800 years for its edible roots and was transplanted beyond its natural distribution as part of its cultivation. We found very high levels of genetic structuring in the natural populations (FST = 0.84), indicating low levels of gene flow. Reduced genetic diversity was found in the translocated populations, suggesting a large loss of genetic diversity early in the domestication process. The data indicates that rengarenga was brought into cultivation independently at least three times, with the sources of these introductions located within a narrow area encompassing about 250km of coastline. Hybridization was inferred between A. cirratum and the closely related A. bifurcatum, despite A. birfucatum not occurring in the vicinity.


Assuntos
Asparagaceae/genética , Fluxo Gênico , Variação Genética , Genética Populacional , Genótipo , Hibridização Genética , Repetições de Microssatélites/genética , Nova Zelândia
19.
Int J Parasitol Parasites Wildl ; 7(3): 335-342, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30258780

RESUMO

We studied the population genetics of one population sample of hybrid Mallard x Grey Ducks and their lice in New Zealand. We aimed to document the relationship between ectoparasite load and host phenotype, and test for an association between the mtDNA diversity of the lice and their hosts, which is predicted based on maternal care. We found three feather lice species previously described for these hosts: Anaticola crassicornis (wing louse), Anatoecus dentatus (head louse), and Trinoton querquedulae (body louse). No new or rare lice species were uncovered. Most ducks in our sample were more Mallard-like than Grey Duck-like hybrids for the five colour and plumage traits examined. We confirm that based solely on phenotypic characters it is difficult to distinguish between Mallards, hybrids and Grey Ducks. We detected no association between the number of lice and host phenotype for two of the three louse species (while controlling for bird size). However, the Grey Duck-like hybrids had fewer head lice (A. dentatus) than their Mallard-like counterparts. Only three of the 40 hosts had mtDNA haplotypes that characterise Grey Ducks. We present the first genetic data of Anaticola crassicornis, Anatoecus dentatus and Trinoton querquedulae from New Zealand waterfowl. We found that the lice mtDNA had greater sequence diversity than the homologous gene for the ducks. A mitochondrial phylogeny for A. crassicornis collected from hosts worldwide has been previously published, and we added our novel data to infer evolutionary relationships among worldwide populations of this louse. None of the three lice species showed a close association of parasite and host mtDNA lineage despite lack of paternal care in these duck species.

20.
PLoS One ; 12(8): e0183555, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28859137

RESUMO

Herbarium specimens are an important source of DNA for plant research but current sampling methods require the removal of material for DNA extraction. This is undesirable for irreplaceable specimens such as rare species or type material. Here I present the first non-destructive sampling method for extracting DNA from herbarium specimens. DNA was successfully retrieved from robust leaves and/or stems of herbarium specimens up to 73 years old.


Assuntos
DNA de Plantas/isolamento & purificação , Plantas/genética , Manejo de Espécimes , DNA de Plantas/genética , Folhas de Planta/genética , Reação em Cadeia da Polimerase , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...